1.kafka基本原理
创建一个maven的项目
org.apache.kafka kafka-clients 2.4.1 com.alibaba fastjson 1.1.41 ch.qos.logback logback-core 1.1.3 ch.qos.logback logback-classic 1.1.1
1.订单类
package com.july.kafka;public class Order {private Integer orderId;private Integer productId;private Integer productNum;private Double orderAmount;public Order() {}public Order(Integer orderId, Integer productId, Integer productNum, Double orderAmount) {super();this.orderId = orderId;this.productId = productId;this.productNum = productNum;this.orderAmount = orderAmount;}public Integer getOrderId() {return orderId;}public void setOrderId(Integer orderId) {this.orderId = orderId;}public Integer getProductId() {return productId;}public void setProductId(Integer productId) {this.productId = productId;}public Integer getProductNum() {return productNum;}public void setProductNum(Integer productNum) {this.productNum = productNum;}public Double getOrderAmount() {return orderAmount;}public void setOrderAmount(Double orderAmount) {this.orderAmount = orderAmount;}
}
一些比较重要的参数:
ACKS_CONFIG
发出消息持久化机制参数,上篇我们知道kafka集群配置了多个副本之后,读写是在leader进行的,但是需要同步follower副本,那么这个参数其实就是等待配置数量
写入成功的副本个数,如果为1则是leader写入成功就可以继续发送下一条消息,2则为一个leader,和同步成功一个follower成功后可以发送一下条消息。以此类推。如果是全部则为-1
或者all
。
RETRIES_CONFIG
失败之后重试次数
RETRY_BACKOFF_MS_CONFIG
重试间隔(毫秒)
BATCH_SIZE_CONFIG
缓存区大小(字节Bytes),客户端不是生产一条消息就发送给kafka一条消息,客户端有一个缓存区先把消息放到这个缓存区,然后达到配置的大小,把这一批发送到kafka。那如果过了一年我的缓存区还没达到我配置的大小怎么办。请往下看。
LINGER_MS_CONFIG
如果缓存区没满,也按照这个配置(毫秒),每隔这个时间就发送一次缓存区中的消息,不管满没满。
package com.july.kafka;import com.alibaba.fastjson.JSON;
import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;import java.util.Properties;
import java.util.concurrent.ExecutionException;public class MsgProducer {private final static String TOPIC_NAME = "test4";public static void main(String[] args) throws InterruptedException, ExecutionException {Properties props = new Properties();props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.220.66:9092,192.168.220.66:9093,192.168.220.66:9094");/*发出消息持久化机制参数(1)acks=0: 表示producer不需要等待任何broker确认收到消息的回复,就可以继续发送下一条消息。性能最高,但是最容易丢消息。(2)acks=1: 至少要等待leader已经成功将数据写入本地log,但是不需要等待所有follower是否成功写入。就可以继续发送下一条消息。这种情况下,如果follower没有成功备份数据,而此时leader又挂掉,则消息会丢失。(3)acks=-1或all: 需要等待 min.insync.replicas(默认为1,推荐配置大于等于2) 这个参数配置的副本个数都成功写入日志,这种策略会保证只要有一个备份存活就不会丢失数据。这是最强的数据保证。一般除非是金融级别,或跟钱打交道的场景才会使用这种配置。*/props.put(ProducerConfig.ACKS_CONFIG, "1");/*发送失败会重试,默认重试间隔100ms,重试能保证消息发送的可靠性,但是也可能造成消息重复发送,比如网络抖动,所以需要在接收者那边做好消息接收的幂等性处理*/props.put(ProducerConfig.RETRIES_CONFIG, 3);//重试间隔设置props.put(ProducerConfig.RETRY_BACKOFF_MS_CONFIG, 300);//设置发送消息的本地缓冲区,如果设置了该缓冲区,消息会先发送到本地缓冲区,可以提高消息发送性能,默认值是33554432,即32MBprops.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);/*kafka本地线程会从缓冲区取数据,批量发送到broker,设置批量发送消息的大小,默认值是16384,即16kb,就是说一个batch满了16kb就发送出去*/props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);/*默认值是0,意思就是消息必须立即被发送,但这样会影响性能一般设置10毫秒左右,就是说这个消息发送完后会进入本地的一个batch,如果10毫秒内,这个batch满了16kb就会随batch一起被发送出去如果10毫秒内,batch没满,那么也必须把消息发送出去,不能让消息的发送延迟时间太长*/props.put(ProducerConfig.LINGER_MS_CONFIG, 10);//把发送的key从字符串序列化为字节数组props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());//把发送消息value从字符串序列化为字节数组props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());Producer producer = new KafkaProducer(props);int msgNum = 5;for (int i = 1; i <= msgNum; i++) {Order order = new Order(i, 100 + i, 1, 1000.00);//指定发送分区ProducerRecord producerRecord = new ProducerRecord(TOPIC_NAME, 0, order.getOrderId().toString(), JSON.toJSONString(order));//等待消息发送成功的同步阻塞方法RecordMetadata metadata = producer.send(producerRecord).get();System.out.println("同步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"+ metadata.partition() + "|offset-" + metadata.offset()+"|order-"+order.getProductId());}producer.close();}
}
进行消费
bin/kafka-console-consumer.sh --bootstrap-server 192.168.220.66:9092 --from-beginning --topic test4
package com.july.kafka;import com.alibaba.fastjson.JSON;
import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;import java.util.Properties;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;public class MsgProducer {private final static String TOPIC_NAME = "test4";public static void main(String[] args) throws InterruptedException, ExecutionException {Properties props = new Properties();props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.220.66:9092,192.168.220.66:9093,192.168.220.66:9094");/*发出消息持久化机制参数(1)acks=0: 表示producer不需要等待任何broker确认收到消息的回复,就可以继续发送下一条消息。性能最高,但是最容易丢消息。(2)acks=1: 至少要等待leader已经成功将数据写入本地log,但是不需要等待所有follower是否成功写入。就可以继续发送下一条消息。这种情况下,如果follower没有成功备份数据,而此时leader又挂掉,则消息会丢失。(3)acks=-1或all: 需要等待 min.insync.replicas(默认为1,推荐配置大于等于2) 这个参数配置的副本个数都成功写入日志,这种策略会保证只要有一个备份存活就不会丢失数据。这是最强的数据保证。一般除非是金融级别,或跟钱打交道的场景才会使用这种配置。*/props.put(ProducerConfig.ACKS_CONFIG, "1");/*发送失败会重试,默认重试间隔100ms,重试能保证消息发送的可靠性,但是也可能造成消息重复发送,比如网络抖动,所以需要在接收者那边做好消息接收的幂等性处理*/props.put(ProducerConfig.RETRIES_CONFIG, 3);//重试间隔设置props.put(ProducerConfig.RETRY_BACKOFF_MS_CONFIG, 300);//设置发送消息的本地缓冲区,如果设置了该缓冲区,消息会先发送到本地缓冲区,可以提高消息发送性能,默认值是33554432,即32MBprops.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);/*kafka本地线程会从缓冲区取数据,批量发送到broker,设置批量发送消息的大小,默认值是16384,即16kb,就是说一个batch满了16kb就发送出去*/props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);/*默认值是0,意思就是消息必须立即被发送,但这样会影响性能一般设置10毫秒左右,就是说这个消息发送完后会进入本地的一个batch,如果10毫秒内,这个batch满了16kb就会随batch一起被发送出去如果10毫秒内,batch没满,那么也必须把消息发送出去,不能让消息的发送延迟时间太长*/props.put(ProducerConfig.LINGER_MS_CONFIG, 10);//把发送的key从字符串序列化为字节数组props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());//把发送消息value从字符串序列化为字节数组props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());Producer producer = new KafkaProducer(props);int msgNum = 5;final CountDownLatch countDownLatch = new CountDownLatch(msgNum);for (int i = 1; i <= msgNum; i++) {Order order = new Order(i, 100 + i, 1, 1000.00);//指定发送分区ProducerRecord producerRecord = new ProducerRecord(TOPIC_NAME, 0, order.getOrderId().toString(), JSON.toJSONString(order));//异步回调方式发送消息producer.send(producerRecord, new Callback() {public void onCompletion(RecordMetadata metadata, Exception exception) {//回调产生异常,打印异常if (exception != null) {System.err.println("发送消息失败:" + exception.getStackTrace());}if (metadata != null) {System.out.println("同步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"+ metadata.partition() + "|offset-" + metadata.offset()+"|order-"+order.getProductId());}countDownLatch.countDown();}});}countDownLatch.await(5, TimeUnit.SECONDS);producer.close();}
}
package com.july.kafka;import com.alibaba.fastjson.JSON;
import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;import java.util.Properties;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;public class MsgProducer {private final static String TOPIC_NAME = "test4";public static void main(String[] args) throws InterruptedException, ExecutionException {Properties props = new Properties();props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.220.66:9092,192.168.220.66:9093,192.168.220.66:9094");/*发出消息持久化机制参数(1)acks=0: 表示producer不需要等待任何broker确认收到消息的回复,就可以继续发送下一条消息。性能最高,但是最容易丢消息。(2)acks=1: 至少要等待leader已经成功将数据写入本地log,但是不需要等待所有follower是否成功写入。就可以继续发送下一条消息。这种情况下,如果follower没有成功备份数据,而此时leader又挂掉,则消息会丢失。(3)acks=-1或all: 需要等待 min.insync.replicas(默认为1,推荐配置大于等于2) 这个参数配置的副本个数都成功写入日志,这种策略会保证只要有一个备份存活就不会丢失数据。这是最强的数据保证。一般除非是金融级别,或跟钱打交道的场景才会使用这种配置。*/props.put(ProducerConfig.ACKS_CONFIG, "1");/*发送失败会重试,默认重试间隔100ms,重试能保证消息发送的可靠性,但是也可能造成消息重复发送,比如网络抖动,所以需要在接收者那边做好消息接收的幂等性处理*/props.put(ProducerConfig.RETRIES_CONFIG, 3);//重试间隔设置props.put(ProducerConfig.RETRY_BACKOFF_MS_CONFIG, 300);//设置发送消息的本地缓冲区,如果设置了该缓冲区,消息会先发送到本地缓冲区,可以提高消息发送性能,默认值是33554432,即32MBprops.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);/*kafka本地线程会从缓冲区取数据,批量发送到broker,设置批量发送消息的大小,默认值是16384,即16kb,就是说一个batch满了16kb就发送出去*/props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);/*默认值是0,意思就是消息必须立即被发送,但这样会影响性能一般设置10毫秒左右,就是说这个消息发送完后会进入本地的一个batch,如果10毫秒内,这个batch满了16kb就会随batch一起被发送出去如果10毫秒内,batch没满,那么也必须把消息发送出去,不能让消息的发送延迟时间太长*/props.put(ProducerConfig.LINGER_MS_CONFIG, 10);//把发送的key从字符串序列化为字节数组props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());//把发送消息value从字符串序列化为字节数组props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());Producer producer = new KafkaProducer(props);int msgNum = 5;final CountDownLatch countDownLatch = new CountDownLatch(msgNum);for (int i = 1; i <= msgNum; i++) {Order order = new Order(i, 100 + i, 1, 1000.00);//指定发送分区
// ProducerRecord producerRecord = new ProducerRecord(TOPIC_NAME
// , 0, order.getOrderId().toString(), JSON.toJSONString(order));//未指定发送分区,具体发送的分区计算公式:hash(key)%partitionNumProducerRecord producerRecord = new ProducerRecord(TOPIC_NAME, order.getOrderId().toString(), JSON.toJSONString(order));//等待消息发送成功的同步阻塞方法
// RecordMetadata metadata = producer.send(producerRecord).get();
// System.out.println("同步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"
// + metadata.partition() + "|offset-" + metadata.offset()+"|order-"+order.getProductId());//异步回调方式发送消息producer.send(producerRecord, new Callback() {public void onCompletion(RecordMetadata metadata, Exception exception) {if (exception != null) {System.err.println("发送消息失败:" + exception.getStackTrace());}if (metadata != null) {System.out.println("异步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"+ metadata.partition() + "|offset-" + metadata.offset()+"|order-"+order.getProductId());}countDownLatch.countDown();}});}countDownLatch.await(5, TimeUnit.SECONDS);producer.close();}
}
源码中指定分区计算分区
一些比较重要的参数配置:
一些比较重要的方法:
增加一个配置文件,为了防止启动消费者后,控制台一直打印日志.
logback %d{HH:mm:ss} [%thread] %-5level %logger{36} - %msg%n true poslog/%d{yyyy-MM-dd}/%d{yyyy-MM-dd}.log %d{yyyy-MM-dd HH:mm:ss} -%msg%n %d{yyyy-MM-dd HH:mm:ss} [%thread] %-5level %logger{36} - %msg%n
package com.july.kafka;import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;import java.time.Duration;
import java.util.Arrays;
import java.util.Properties;public class MsgConsumer {private final static String TOPIC_NAME = "test4";private final static String CONSUMER_GROUP_NAME = "testGroup";public static void main(String[] args) throws Exception {Properties props = new Properties();props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.220.66:9092,192.168.220.66:9093,192.168.220.66:9094");// 消费分组名props.put(ConsumerConfig.GROUP_ID_CONFIG, CONSUMER_GROUP_NAME);// 是否自动提交offset,默认就是trueprops.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");// 自动提交offset的间隔时间props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
// props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");/*当消费主题的是一个新的消费组,或者指定offset的消费方式,offset不存在,那么应该如何消费latest(默认) :只消费自己启动之后发送到主题的消息earliest:第一次从头开始消费,以后按照消费offset记录继续消费,这个需要区别于consumer.seekToBeginning(每次都从头开始消费)*///props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");/*consumer给broker发送心跳的间隔时间,broker接收到心跳如果此时有rebalance发生会通过心跳响应将rebalance方案下发给consumer,这个时间可以稍微短一点*/props.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, 1000);/*服务端broker多久感知不到一个consumer心跳就认为他故障了,会将其踢出消费组,对应的Partition也会被重新分配给其他consumer,默认是10秒*/props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 10 * 1000);//一次poll最大拉取消息的条数,如果消费者处理速度很快,可以设置大点,如果处理速度一般,可以设置小点props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 50);/*如果两次poll操作间隔超过了这个时间,broker就会认为这个consumer处理能力太弱,会将其踢出消费组,将分区分配给别的consumer消费*/props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 30 * 1000);props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());KafkaConsumer consumer = new KafkaConsumer(props);consumer.subscribe(Arrays.asList(TOPIC_NAME));// 消费指定分区//consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));//消息回溯消费/*consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));consumer.seekToBeginning(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));*///指定offset消费/*consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));consumer.seek(new TopicPartition(TOPIC_NAME, 0), 10);*///从指定时间点开始消费/*List topicPartitions = consumer.partitionsFor(TOPIC_NAME);//从1小时前开始消费long fetchDataTime = new Date().getTime() - 1000 * 60 * 60;Map map = new HashMap<>();for (PartitionInfo par : topicPartitions) {map.put(new TopicPartition(TOPIC_NAME, par.partition()), fetchDataTime);}Map parMap = consumer.offsetsForTimes(map);for (Map.Entry entry : parMap.entrySet()) {TopicPartition key = entry.getKey();OffsetAndTimestamp value = entry.getValue();if (key == null || value == null) continue;Long offset = value.offset();System.out.println("partition-" + key.partition() + "|offset-" + offset);System.out.println();//根据消费里的timestamp确定offsetif (value != null) {consumer.assign(Arrays.asList(key));consumer.seek(key, offset);}}*/while (true) {/** poll() API 是拉取消息的长轮询*/ConsumerRecords records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord record : records) {System.out.printf("收到消息:partition = %d,offset = %d, key = %s, value = %s%n", record.partition(),record.offset(), record.key(), record.value());}if (records.count() > 0) {// 手动同步提交offset,当前线程会阻塞直到offset提交成功// 一般使用同步提交,因为提交之后一般也没有什么逻辑代码了consumer.commitSync();// 手动异步提交offset,当前线程提交offset不会阻塞,可以继续处理后面的程序逻辑/*consumer.commitAsync(new OffsetCommitCallback() {@Overridepublic void onComplete(Map offsets, Exception exception) {if (exception != null) {System.err.println("Commit failed for " + offsets);System.err.println("Commit failed exception: " + exception.getStackTrace());}}});*/}}}
}
pom
4.0.0 com.example spring-boot-kafka 0.0.1-SNAPSHOT jar spring-boot-kafka Demo project for Spring Boot org.springframework.boot spring-boot-starter-parent 2.1.2.RELEASE UTF-8 UTF-8 1.8 org.springframework.boot spring-boot-starter-web org.springframework.kafka spring-kafka org.springframework.boot spring-boot-maven-plugin
生产者
package com.kafka;import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;@RestController
public class KafkaController {private final static String TOPIC_NAME = "test4";@Autowiredprivate KafkaTemplate kafkaTemplate;@RequestMapping("/send")public void send() {kafkaTemplate.send(TOPIC_NAME, 0, "key", "产生的消息");}}
消费者
package com.kafka;import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.support.Acknowledgment;
import org.springframework.stereotype.Component;@Component
public class MyConsumer {/*** @KafkaListener(groupId = "testGroup", topicPartitions = {* @TopicPartition(topic = "topic1", partitions = {"0", "1"}),* @TopicPartition(topic = "topic2", partitions = "0",* partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "100"))* },concurrency = "6")* //concurrency就是同组下的消费者个数,就是并发消费数,必须小于等于分区总数* @param record*/@KafkaListener(topics = "test4",groupId = "zhugeGroup")public void listenZhugeGroup(ConsumerRecord record, Acknowledgment ack) {String value = record.value();System.out.println(value);System.out.println(record);//手动提交offset//ack.acknowledge();}//配置多个消费组/*@KafkaListener(topics = "test4",groupId = "tulingGroup")public void listenTulingGroup(ConsumerRecord record, Acknowledgment ack) {String value = record.value();System.out.println(value);System.out.println(record);ack.acknowledge();}*/
}
配置文件application.yml
server:port: 8080spring:kafka:bootstrap-servers: 192.168.220.66:9092,192.168.220.66:9093,192.168.220.66:9094producer: # 生产者retries: 3 # 设置大于0的值,则客户端会将发送失败的记录重新发送batch-size: 16384buffer-memory: 33554432acks: 1# 指定消息key和消息体的编解码方式key-serializer: org.apache.kafka.common.serialization.StringSerializervalue-serializer: org.apache.kafka.common.serialization.StringSerializerconsumer:group-id: default-groupenable-auto-commit: falseauto-offset-reset: earliestkey-deserializer: org.apache.kafka.common.serialization.StringDeserializervalue-deserializer: org.apache.kafka.common.serialization.StringDeserializerlistener:# 当每一条记录被消费者监听器(ListenerConsumer)处理之后提交# RECORD# 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后提交# BATCH# 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后,距离上次提交时间大于TIME时提交# TIME# 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后,被处理record数量大于等于COUNT时提交# COUNT# TIME | COUNT 有一个条件满足时提交# COUNT_TIME# 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后, 手动调用Acknowledgment.acknowledge()后提交# MANUAL# 手动调用Acknowledgment.acknowledge()后立即提交# MANUAL_IMMEDIATEack-mode: MANUAL_IMMEDIATE
启动类
package com.kafka;import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;@SpringBootApplication
public class Application {public static void main(String[] args) {SpringApplication.run(Application.class, args);}}
这里只是简单了解一下kafka常用的参数,详细了解这些参数还是要去参考kafka的官方文档。