【C++进阶】map和set——中篇(AVL树的学习)
创始人
2024-01-27 02:25:18
0

🎇C++笔试强训


  • 博客主页:一起去看日落吗
  • 分享博主的C++刷题日常,大家一起学习
  • 博主的能力有限,出现错误希望大家不吝赐教
  • 分享给大家一句我很喜欢的话:夜色难免微凉,前方必有曙光 🌞。

在这里插入图片描述

🍁 🍃 🍂 🌿


目录

  • 🍁 前言
  • 🍁 1. AVL树
    • 🍂 1.1 AVL树的概念
    • 🍂 1.2 AVL树节点的定义
    • 🍂 1.3 AVL树的插入
    • 🍂 1.4 AVL树的旋转
    • 🍂 1.5 AVL树的验证
    • 🍂 1.6 AVL树的性能
    • 🍂 1.7 AVL树的实现

🍁 前言

前面对map/multimap/set/multiset进行了简单的介绍,在其文档介绍中发现,这几个容器有个
共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中
插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此
map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。


🍁 1. AVL树

🍂 1.1 AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

  • 一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

在这里插入图片描述

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在
O(log2n)O(log_2 n)O(log2​n),搜索时间复杂度O(log2nlog_2 nlog2​n)。


🍂 1.2 AVL树节点的定义

template
struct AVLTreeNode
{AVLTreeNode(const T& data): _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr), _data(data), _bf(0){}AVLTreeNode* _pLeft; // 该节点的左孩子AVLTreeNode* _pRight; // 该节点的右孩子AVLTreeNode* _pParent; // 该节点的双亲T _data;int _bf; // 该节点的平衡因子
};

🍂 1.3 AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么
AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子

在这里插入图片描述
pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent的平衡因子分为三种情况:
-1,0, 1, 分以下两种情况:

  1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
  2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可

此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2

  1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
    成0,此时满足AVL树的性质,插入成功
  2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
    新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新
  3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进
    行旋转处理
pair Insert(const pair& kv){if (_root == nullptr)//根节点为空时先new一个新节点{_root = new Node(kv);return make_pair(_root, true);}Node* cur = _root;Node* parent = nullptr;//先利用while循环去找cur的空位while (cur){if (kv.first > cur->_kv.first){parent = cur;cur = cur->_right;}else if (kv.first < cur->_kv.first){parent = cur;cur = cur->_left;}else{return make_pair(cur, false);}}//将cur插入到相应位置cur = new Node(kv);Node* newnode = cur;//用一个newnode记录一下新节点用以返回if (kv.first > parent->_kv.first){parent->_right = cur;//注意三叉链的链接逻辑顺序,等号左右方向不能反,先把cur链接到父节点的右边cur->_parent = parent;//然后再去把父指针知道父节点}else{parent->_left = cur;cur->_parent = parent;}//进行旋转调整//while(cur!=_root)while (parent){//1.进入循环先对平衡因子进行调整if (cur == parent->_right){parent->_bf++;}else{parent->_bf--;}//分三种情况向上走if (parent->_bf == 0)//平衡因子等于0不需要调整{//为什么不需调整//因为等于0的话,说明底层子树高度不平衡,添加进入新元素后平衡了,只要平衡了高度并没发生变化,不会影响上面的父节点break;}else if (parent->_bf == -1 || parent->_bf == 1){//平衡因子等于-1,说明插入新节点后子树的高度不平衡了,需要继续往上迭代查看父节点是否还满足平衡节点cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){if (parent->_bf == -2)//父节点等于-2,说明左边高,触发右旋的情况{if (cur->_bf == -1)//cur节点等于-1,说明在cur的左边更高,触发右单旋的情况{RotateR(parent);}else//cur等于-1,说明在cur的右边更高,触发左右双旋{RotateLR(parent);}}else//父节点等于1,说明右边更高,触发左旋的情况{if (cur->_bf == 1)//cur节点等于1时,说明在cur的右边更高,触发右单旋的情况{RotateL(parent);}else//cur等于-1,说明在cur的左边更高,触发右左双旋{RotateRL(parent);}}//思考:为什么上面在传参数的时候,都是传parent的节点呢?这样的好处是什么呢break;//调整完成后break退出循环//这里为什么调整完成过后就可以退出,通过旋转调整平衡因子后,parent节点的平衡因子都为0了,调整过后不需要再向上继续查找了}else{assert(false);}}return make_pair(newnode,true);}

🍂 1.4 AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

  • 新节点插入较高左子树的左侧—左左:右单旋

在这里插入图片描述

上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有
右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:

  1. 30节点的右孩子可能存在,也可能不存在
  2. 60可能是根节点,也可能是子树

如果是根节点,旋转完成后,要更新根节点

如果是子树,可能是某个节点的左子树,也可能是右子树

void RotateR(Node* parent)//右单旋{Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR != nullptr)//注意:这里一定要判断不为空的,因为下面可能会出现空指针的解引用{subLR->_parent = parent;}subL->_right = parent;Node* parentParent = parent->_parent;//一定要在改变链接关系之前把这个指针存下来parent->_parent = subL;//if (parentParent == nullptr)或者采用这个条件也是可以的if(parent==_root){_root = subL;_root->_parent = nullptr;}else{//这里注意:parent还有父母时,链接之前需要注意判断到底是右孩子还是左孩子if (parentParent->_left == parent)parentParent->_left = subL;elseparentParent->_right = subL;subL->_parent = parentParent;//最后还要把父指针关系链接上}parent->_bf = subL->_bf = 0;//最后右单旋完成后平衡因子都要修改成0}
  • 新节点插入较高右子树的右侧—右右:左单旋

在这里插入图片描述

和右单旋近似,可以参考代码

void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;//先把subR的左孩子赋值给parent的右节点parent->_right = subRL;if (subRL != nullptr)//注意一定要判断是否为空的情况{subRL->_parent = parent;//然后链接parent指针}//然后subR的左节点链接上parentsubR->_left = parent;Node* parentParent = parent->_parent;//提前记录parent->_parent = subR;//if (parentParent == nullptr)if (parent == _root){_root = subR;_root->_parent = nullptr;}else{if (parentParent->_left == parent)parentParent->_left = subR;elseparentParent->_right = subR;subR->_parent = parentParent;}parent->_bf = subR->_bf = 0;}
  • 新节点插入较高左子树的右侧—左右:先左单旋再右单旋

在这里插入图片描述
将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再
考虑平衡因子的更新。

请添加图片描述

void RotateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);//先进行左旋,并注意旋转点为父节点的左节点RotateR(parent);//再进行右旋,此时旋转点为父节点if (bf == 0){parent->_bf = 0;subL->_bf = 0;subLR->_bf = 0;}else if (bf == 1){parent->_bf = 0;subL->_bf = -1;subLR->_bf = 0;}else if (bf == -1){parent->_bf = 1;subL->_bf = 0;subLR->_bf = 0;}//注意这里处理完成过后sunRL的平衡因子一定都是等于0的else{assert(false);}}
  • 新节点插入较高右子树的左侧—右左:先右单旋再左单旋

在这里插入图片描述

void RotateRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;//注意:需要提前存subRL的平衡因子,因为旋转可能引起改变//subRL的平衡因子是双旋的关键节点RotateR(parent->_right);//先进行右旋,并注意旋转点为父节点的右节点RotateL(parent);//再进行左旋,此时旋转点为父节点if (bf == 0){parent->_bf = 0;subR->_bf = 0;subRL->_bf = 0;}else if (bf == 1){parent->_bf = -1;subR->_bf = 0;subRL->_bf = 0;}else if (bf == -1){parent->_bf = 0;subR->_bf = 1;subRL->_bf = 0;}//注意这里处理完成过后sunRL的平衡因子一定都是等于0的else{assert(false);}}

总结:
假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑

  1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
    – 当pSubR的平衡因子为1时,执行左单旋
    – 当pSubR的平衡因子为-1时,执行右左双旋
  2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
    – 当pSubL的平衡因子为-1是,执行右单旋
    – 当pSubL的平衡因子为1时,执行左右双旋

旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。


🍂 1.5 AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树
    – 如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
  2. 验证其为平衡树
    – 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
    – 节点的平衡因子是否计算正确
void _Inorder(Node* root)//中序遍历打印每个节点{if (root == nullptr)return;_Inorder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_Inorder(root->_right);}void Inorder(){_Inorder(_root);cout << endl;}//验证是否为平衡二叉树//1.左子树高度与右子树高度差必须小于1int _Height(Node* root)//求树的高度函数{if (root == nullptr){return 0;}int leftHeight = _Height(root->_left);//递归去子问题求解int rightHeight = _Height(root->_right);return rightHeight > leftHeight ? rightHeight + 1 : leftHeight + 1;}bool _IsBalance(Node* root){if (root == nullptr){return true;}int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);// 2.检查一下每颗树的平衡因子是否正确if (rightHeight - leftHeight != root->_bf){cout << "平衡因子异常:" << root->_kv.first << endl;return false;}return abs(rightHeight - leftHeight) < 2&& _IsBalance(root->_left)&& _IsBalance(root->_right);//分别递归到各自的左右子树再去检查}bool IsAVLTree(){return _IsBalance(_root);}

🍂 1.6 AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这
样可以保证查询时高效的时间复杂度,即log2(N)log_2 (N)log2​(N)。

但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。


🍂 1.7 AVL树的实现

AVLTree.hpp

//
//  AVLTree.hpp
//  AVLtree
//
//  Created by 卜绎皓 on 2022/11/16.
//#pragma once
#include
#include
#include
using namespace std;template
struct AVLTreeNode
{AVLTreeNode* _left;AVLTreeNode* _right;AVLTreeNode* _parent;//定义成三叉链的形式int _bf;//balance factor平衡因子pair _kv;//用pair同时存K和V两个数据AVLTreeNode(const pair& kv)//节点构造函数:_left(nullptr),_right(nullptr),_parent(nullptr),_bf(0)//平衡因子初始给0,_kv(kv){}
};template
class AVLTree
{typedef AVLTreeNode Node;
public:AVLTree():_root(nullptr){}//拷贝构造和赋值拷贝也需要自己实现AVLTree(const AVLTree& kv){_root = Copy(kv._root);}AVLTree& operator=(AVLTree kv){swap(_root, kv._root);return *this;}~AVLTree(){Destroy(_root);_root = nullptr;}Node* Copy(Node* root){if (root == nullptr)return nullptr;Node* newroot = new Node(root->_key);//建立新节点newroot->_left = Copy(root->_left);//新节点的左右节点再去转换成子问题newroot->_right = Copy(root->_right);return newroot;//最后返回新节点}void Destroy(Node* root){//利用后序遍历去释放节点if (root == nullptr){return;}Destroy(root->_left);Destroy(root->_right);delete root;}V& operator[](const K& key)//重载operator[]{//operator[]的原则是://如果插入成功返回插入都value的引用//如果插入失败则返回V类型默认缺省值pair ret = Insert(make_pair(key, V()));//V采用传匿名对象的方式return ret.first->_kv.second;}Node* Find(const pair& kv)//查找函数{Node* cur = _root;while (cur){if (kv.first > cur->_kv.first){cur = cur->_right;}else if (kv.first < cur->_kv.first){cur = cur->_left;}else{return cur;}}return nullptr;}void RotateR(Node* parent)//右单旋{Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR != nullptr)//注意:这里一定要判断不为空的,因为下面可能会出现空指针的解引用{subLR->_parent = parent;}subL->_right = parent;Node* parentParent = parent->_parent;//一定要在改变链接关系之前把这个指针存下来parent->_parent = subL;//if (parentParent == nullptr)或者采用这个条件也是可以的if(parent==_root){_root = subL;_root->_parent = nullptr;}else{//这里注意:parent还有父母时,链接之前需要注意判断到底是右孩子还是左孩子if (parentParent->_left == parent)parentParent->_left = subL;elseparentParent->_right = subL;subL->_parent = parentParent;//最后还要把父指针关系链接上}parent->_bf = subL->_bf = 0;//最后右单旋完成后平衡因子都要修改成0}void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;//先把subR的左孩子赋值给parent的右节点parent->_right = subRL;if (subRL != nullptr)//注意一定要判断是否为空的情况{subRL->_parent = parent;//然后链接parent指针}//然后subR的左节点链接上parentsubR->_left = parent;Node* parentParent = parent->_parent;//提前记录parent->_parent = subR;//if (parentParent == nullptr)if (parent == _root){_root = subR;_root->_parent = nullptr;}else{if (parentParent->_left == parent)parentParent->_left = subR;elseparentParent->_right = subR;subR->_parent = parentParent;}parent->_bf = subR->_bf = 0;}void RotateRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;//注意:需要提前存subRL的平衡因子,因为旋转可能引起改变//subRL的平衡因子是双旋的关键节点RotateR(parent->_right);//先进行右旋,并注意旋转点为父节点的右节点RotateL(parent);//再进行左旋,此时旋转点为父节点if (bf == 0){parent->_bf = 0;subR->_bf = 0;subRL->_bf = 0;}else if (bf == 1){parent->_bf = -1;subR->_bf = 0;subRL->_bf = 0;}else if (bf == -1){parent->_bf = 0;subR->_bf = 1;subRL->_bf = 0;}//注意这里处理完成过后sunRL的平衡因子一定都是等于0的else{assert(false);}}void RotateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);//先进行左旋,并注意旋转点为父节点的左节点RotateR(parent);//再进行右旋,此时旋转点为父节点if (bf == 0){parent->_bf = 0;subL->_bf = 0;subLR->_bf = 0;}else if (bf == 1){parent->_bf = 0;subL->_bf = -1;subLR->_bf = 0;}else if (bf == -1){parent->_bf = 1;subL->_bf = 0;subLR->_bf = 0;}//注意这里处理完成过后sunRL的平衡因子一定都是等于0的else{assert(false);}}pair Insert(const pair& kv){if (_root == nullptr)//根节点为空时先new一个新节点{_root = new Node(kv);return make_pair(_root, true);}Node* cur = _root;Node* parent = nullptr;//先利用while循环去找cur的空位while (cur){if (kv.first > cur->_kv.first){parent = cur;cur = cur->_right;}else if (kv.first < cur->_kv.first){parent = cur;cur = cur->_left;}else{return make_pair(cur, false);}}//将cur插入到相应位置cur = new Node(kv);Node* newnode = cur;//用一个newnode记录一下新节点用以返回if (kv.first > parent->_kv.first){parent->_right = cur;//注意三叉链的链接逻辑顺序,等号左右方向不能反,先把cur链接到父节点的右边cur->_parent = parent;//然后再去把父指针知道父节点}else{parent->_left = cur;cur->_parent = parent;}//进行旋转调整//while(cur!=_root)while (parent){//1.进入循环先对平衡因子进行调整if (cur == parent->_right){parent->_bf++;}else{parent->_bf--;}//分三种情况向上走if (parent->_bf == 0)//平衡因子等于0不需要调整{//为什么不需调整//因为等于0的话,说明底层子树高度不平衡,添加进入新元素后平衡了,只要平衡了高度并没发生变化,不会影响上面的父节点break;}else if (parent->_bf == -1 || parent->_bf == 1){//平衡因子等于-1,说明插入新节点后子树的高度不平衡了,需要继续往上迭代查看父节点是否还满足平衡节点cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){if (parent->_bf == -2)//父节点等于-2,说明左边高,触发右旋的情况{if (cur->_bf == -1)//cur节点等于-1,说明在cur的左边更高,触发右单旋的情况{RotateR(parent);}else//cur等于-1,说明在cur的右边更高,触发左右双旋{RotateLR(parent);}}else//父节点等于1,说明右边更高,触发左旋的情况{if (cur->_bf == 1)//cur节点等于1时,说明在cur的右边更高,触发右单旋的情况{RotateL(parent);}else//cur等于-1,说明在cur的左边更高,触发右左双旋{RotateRL(parent);}}//思考:为什么上面在传参数的时候,都是传parent的节点呢?这样的好处是什么呢break;//调整完成后break退出循环//这里为什么调整完成过后就可以退出,通过旋转调整平衡因子后,parent节点的平衡因子都为0了,调整过后不需要再向上继续查找了}else{assert(false);}}return make_pair(newnode,true);}void _Inorder(Node* root)//中序遍历打印每个节点{if (root == nullptr)return;_Inorder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_Inorder(root->_right);}void Inorder(){_Inorder(_root);cout << endl;}//验证是否为平衡二叉树//1.左子树高度与右子树高度差必须小于1int _Height(Node* root)//求树的高度函数{if (root == nullptr){return 0;}int leftHeight = _Height(root->_left);//递归去子问题求解int rightHeight = _Height(root->_right);return rightHeight > leftHeight ? rightHeight + 1 : leftHeight + 1;}bool _IsBalance(Node* root){if (root == nullptr){return true;}int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);// 2.检查一下每颗树的平衡因子是否正确if (rightHeight - leftHeight != root->_bf){cout << "平衡因子异常:" << root->_kv.first << endl;return false;}return abs(rightHeight - leftHeight) < 2&& _IsBalance(root->_left)&& _IsBalance(root->_right);//分别递归到各自的左右子树再去检查}bool IsAVLTree(){return _IsBalance(_root);}
private:Node* _root;
};

相关内容

热门资讯

高温黄色预警:新疆河南等11省...   中央气象台7月8日06时继续发布高温黄色预警:  预计7月8日白天,黄淮、江淮北部和西部、江汉、...
最适合小本创业的4个项目 最适... 投资小项目创业小项目加盟创业2021年创业小项目加盟创业小投资项目适合创业的项目有哪些适合男人创业的...
几个适合初次创业的小本创业项目... 投资小项目创业小项目加盟创业2021年创业小项目加盟创业小投资项目适合创业的项目有哪些适合男人创业的...
宠物店投资创业方案 宠物店投资... 宠物创业宠物店怎么开宠物店经营模式宠物店创业计划书宠物店设计宠物店活动方案有哪些宠物店前期没生意宠物...
开家植物宠物店如何 宠物店创业... 宠物创业宠物店怎么开宠物店经营模式宠物店创业计划书宠物店设计宠物店活动方案有哪些宠物店前期没生意宠物...
创业板涨跌幅 创业板涨跌幅 创... 创业板当日最大涨跌幅创业板涨幅20主板也要改成20个点涨跌幅吗创业板新股首日创业板涨跌幅限制?创业板...
山东大学生创业贷款 大学生创业... 海南政府扶持的创业项目国家免息创业贷款15万大学生创业贷款去哪里咨询大学生创业贷款能贷多少大学生创业...
大学生自主创业申请担保贷款有哪... 海南政府扶持的创业项目国家免息创业贷款15万大学生创业贷款去哪里咨询大学生创业贷款能贷多少大学生创业...
无本创业 无本创业 无本创业 创业网站最挣钱没人干的行业20万创业穷人创业一千元以下的一晚挣5万的路子我想创业没钱没经验投资2~3...
网上创业项目 网上创业项目 网... 互联网创业项目网站乡镇最适合的创业项目创业平台有哪些正规创业平台有哪些个人创业项目大全没人注意的暴利...