接上一篇《Postgresql引入SIMD指令集》
PG引入SIMD执行集后具体有多大性能提升?本篇抽取PG的simd库,对比线性搜索场景的性能:
构造一个存有14亿数字的数组
uint32 cnt = 1410065408;uint32 *xids = (uint32 *) malloc(sizeof(uint32) * cnt);for (int i = 0; i < cnt; i++)xids[i] = rand();
场景一:使用SIMD查询一个数字是否在数组中,重复10次
// do 10 times!for (int i = 0; i < 10; i++)res = pg_lfind32(xid, xids, cnt);
场景二:直接遍历查询一个数字是否在数组中,重复10次
// do 10 times!for (int i = 0; i < 10; i++)for (int i = 0; i < cnt; i++)if (xid == xids[i])res = true;
执行14亿数组查询,执行结果:
[mingjie@VM-130-23-centos ~/proj/simd][PGROOT99:9901]$ ./conftest sample: 1804289383 846930886 1681692777...
[use SIMD]find x among 1410065408 numbers: 27.480000 seconds
[use no SIMD]find x among 1410065408 numbers: 34.220000 seconds
结果:
性能差距:SIMD在该场景有 24.5%的性能提升。
gcc -o conftest -Wall -g -ggdb -O0 -g3 -gdwarf-2 -msse4.2 main.c
/***************************************************/
#include
#include
#include
#include
#include /***************************************************/
#define Assert(condition) assert(condition)
#define true ((bool) 1)
#define false ((bool) 0)
typedef unsigned char uint8; /* == 8 bits */
typedef unsigned short uint16; /* == 16 bits */
typedef unsigned int uint32; /* == 32 bits */
typedef unsigned char bool;
typedef size_t Size;
/***************************************************/
// #define USE_ASSERT_CHECKING#include "simd.h"
/***************************************************//** pg_lfind32** Return true if there is an element in 'base' that equals 'key', otherwise* return false.*/
static inline bool
pg_lfind32(uint32 key, uint32 *base, uint32 nelem)
{uint32 i = 0;#ifndef USE_NO_SIMD/** For better instruction-level parallelism, each loop iteration operates* on a block of four registers. Testing for SSE2 has showed this is ~40%* faster than using a block of two registers.*/const Vector32 keys = vector32_broadcast(key); /* load copies of key */const uint32 nelem_per_vector = sizeof(Vector32) / sizeof(uint32);const uint32 nelem_per_iteration = 4 * nelem_per_vector;/* round down to multiple of elements per iteration */const uint32 tail_idx = nelem & ~(nelem_per_iteration - 1);for (i = 0; i < tail_idx; i += nelem_per_iteration){Vector32 vals1,vals2,vals3,vals4,result1,result2,result3,result4,tmp1,tmp2,result;/* load the next block into 4 registers */vector32_load(&vals1, &base[i]);vector32_load(&vals2, &base[i + nelem_per_vector]);vector32_load(&vals3, &base[i + nelem_per_vector * 2]);vector32_load(&vals4, &base[i + nelem_per_vector * 3]);/* compare each value to the key */result1 = vector32_eq(keys, vals1);result2 = vector32_eq(keys, vals2);result3 = vector32_eq(keys, vals3);result4 = vector32_eq(keys, vals4);/* combine the results into a single variable */tmp1 = vector32_or(result1, result2);tmp2 = vector32_or(result3, result4);result = vector32_or(tmp1, tmp2);/* see if there was a match */if (vector32_is_highbit_set(result)){return true;}}
#endif /* ! USE_NO_SIMD *//* Process the remaining elements one at a time. */for (; i < nelem; i++){if (key == base[i])return true;}return false;
}
/***************************************************/int main()
{clock_t start, finish;double duration;uint32 xid = 11;uint32 cnt = 1410065408;uint32 *xids = (uint32 *) malloc(sizeof(uint32) * cnt);bool res = false;for (int i = 0; i < cnt; i++)xids[i] = rand();printf("sample: %d %d %d...\n", xids[0], xids[1], xids[2]);/***************************************************//* SIMD *//***************************************************/start = clock();// do 10 times!for (int i = 0; i < 10; i++)res = pg_lfind32(xid, xids, cnt);finish = clock(); duration = (double)(finish - start) / CLOCKS_PER_SEC;printf( "[use SIMD]find x among %d numbers: %f seconds\n", cnt, duration );// printf("res: %d\n", res);/***************************************************//* no SIMD *//***************************************************/start = clock();// do 10 times!for (int i = 0; i < 10; i++)for (int i = 0; i < cnt; i++)if (xid == xids[i])res = true;finish = clock(); duration = (double)(finish - start) / CLOCKS_PER_SEC;printf( "[use no SIMD]find x among %d numbers: %f seconds\n", cnt, duration );// printf("res: %d\n", res);return res;
}
/*-------------------------------------------------------------------------** simd.h* Support for platform-specific vector operations.** Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group* Portions Copyright (c) 1994, Regents of the University of California** src/include/port/simd.h** NOTES* - VectorN in this file refers to a register where the element operands* are N bits wide. The vector width is platform-specific, so users that care* about that will need to inspect "sizeof(VectorN)".**-------------------------------------------------------------------------*/
#ifndef SIMD_H
#define SIMD_H#if (defined(__x86_64__) || defined(_M_AMD64))
/** SSE2 instructions are part of the spec for the 64-bit x86 ISA. We assume* that compilers targeting this architecture understand SSE2 intrinsics.** We use emmintrin.h rather than the comprehensive header immintrin.h in* order to exclude extensions beyond SSE2. This is because MSVC, at least,* will allow the use of intrinsics that haven't been enabled at compile* time.*/
#include
#define USE_SSE2
typedef __m128i Vector8;
typedef __m128i Vector32;#elif defined(__aarch64__) && defined(__ARM_NEON)
/** We use the Neon instructions if the compiler provides access to them (as* indicated by __ARM_NEON) and we are on aarch64. While Neon support is* technically optional for aarch64, it appears that all available 64-bit* hardware does have it. Neon exists in some 32-bit hardware too, but we* could not realistically use it there without a run-time check, which seems* not worth the trouble for now.*/
#include
#define USE_NEON
typedef uint8x16_t Vector8;
typedef uint32x4_t Vector32;#else
/** If no SIMD instructions are available, we can in some cases emulate vector* operations using bitwise operations on unsigned integers. Note that many* of the functions in this file presently do not have non-SIMD* implementations. In particular, none of the functions involving Vector32* are implemented without SIMD since it's likely not worthwhile to represent* two 32-bit integers using a uint64.*/
#define USE_NO_SIMD
typedef uint64 Vector8;
#endif/* load/store operations */
static inline void vector8_load(Vector8 *v, const uint8 *s);
#ifndef USE_NO_SIMD
static inline void vector32_load(Vector32 *v, const uint32 *s);
#endif/* assignment operations */
static inline Vector8 vector8_broadcast(const uint8 c);
#ifndef USE_NO_SIMD
static inline Vector32 vector32_broadcast(const uint32 c);
#endif/* element-wise comparisons to a scalar */
static inline bool vector8_has(const Vector8 v, const uint8 c);
static inline bool vector8_has_zero(const Vector8 v);
static inline bool vector8_has_le(const Vector8 v, const uint8 c);
static inline bool vector8_is_highbit_set(const Vector8 v);
#ifndef USE_NO_SIMD
static inline bool vector32_is_highbit_set(const Vector32 v);
#endif/* arithmetic operations */
static inline Vector8 vector8_or(const Vector8 v1, const Vector8 v2);
#ifndef USE_NO_SIMD
static inline Vector32 vector32_or(const Vector32 v1, const Vector32 v2);
static inline Vector8 vector8_ssub(const Vector8 v1, const Vector8 v2);
#endif/** comparisons between vectors** Note: These return a vector rather than boolean, which is why we don't* have non-SIMD implementations.*/
#ifndef USE_NO_SIMD
static inline Vector8 vector8_eq(const Vector8 v1, const Vector8 v2);
static inline Vector32 vector32_eq(const Vector32 v1, const Vector32 v2);
#endif/** Load a chunk of memory into the given vector.*/
static inline void
vector8_load(Vector8 *v, const uint8 *s)
{
#if defined(USE_SSE2)*v = _mm_loadu_si128((const __m128i *) s);
#elif defined(USE_NEON)*v = vld1q_u8(s);
#elsememcpy(v, s, sizeof(Vector8));
#endif
}#ifndef USE_NO_SIMD
static inline void
vector32_load(Vector32 *v, const uint32 *s)
{
#ifdef USE_SSE2*v = _mm_loadu_si128((const __m128i *) s);
#elif defined(USE_NEON)*v = vld1q_u32(s);
#endif
}
#endif /* ! USE_NO_SIMD *//** Create a vector with all elements set to the same value.*/
static inline Vector8
vector8_broadcast(const uint8 c)
{
#if defined(USE_SSE2)return _mm_set1_epi8(c);
#elif defined(USE_NEON)return vdupq_n_u8(c);
#elsereturn ~UINT64CONST(0) / 0xFF * c;
#endif
}#ifndef USE_NO_SIMD
static inline Vector32
vector32_broadcast(const uint32 c)
{
#ifdef USE_SSE2return _mm_set1_epi32(c);
#elif defined(USE_NEON)return vdupq_n_u32(c);
#endif
}
#endif /* ! USE_NO_SIMD *//** Return true if any elements in the vector are equal to the given scalar.*/
static inline bool
vector8_has(const Vector8 v, const uint8 c)
{bool result;/* pre-compute the result for assert checking */
#ifdef USE_ASSERT_CHECKINGbool assert_result = false;for (Size i = 0; i < sizeof(Vector8); i++){if (((const uint8 *) &v)[i] == c){assert_result = true;break;}}
#endif /* USE_ASSERT_CHECKING */#if defined(USE_NO_SIMD)/* any bytes in v equal to c will evaluate to zero via XOR */result = vector8_has_zero(v ^ vector8_broadcast(c));
#elseresult = vector8_is_highbit_set(vector8_eq(v, vector8_broadcast(c)));
#endifreturn result;
}/** Convenience function equivalent to vector8_has(v, 0)*/
static inline bool
vector8_has_zero(const Vector8 v)
{
#if defined(USE_NO_SIMD)/** We cannot call vector8_has() here, because that would lead to a* circular definition.*/return vector8_has_le(v, 0);
#elsereturn vector8_has(v, 0);
#endif
}/** Return true if any elements in the vector are less than or equal to the* given scalar.*/
static inline bool
vector8_has_le(const Vector8 v, const uint8 c)
{bool result = false;/* pre-compute the result for assert checking */
#ifdef USE_ASSERT_CHECKINGbool assert_result = false;for (Size i = 0; i < sizeof(Vector8); i++){if (((const uint8 *) &v)[i] <= c){assert_result = true;break;}}
#endif /* USE_ASSERT_CHECKING */#if defined(USE_NO_SIMD)/** To find bytes <= c, we can use bitwise operations to find bytes < c+1,* but it only works if c+1 <= 128 and if the highest bit in v is not set.* Adapted from* https://graphics.stanford.edu/~seander/bithacks.html#HasLessInWord*/if ((int64) v >= 0 && c < 0x80)result = (v - vector8_broadcast(c + 1)) & ~v & vector8_broadcast(0x80);else{/* one byte at a time */for (Size i = 0; i < sizeof(Vector8); i++){if (((const uint8 *) &v)[i] <= c){result = true;break;}}}
#else/** Use saturating subtraction to find bytes <= c, which will present as* NUL bytes. This approach is a workaround for the lack of unsigned* comparison instructions on some architectures.*/result = vector8_has_zero(vector8_ssub(v, vector8_broadcast(c)));
#endifreturn result;
}/** Return true if the high bit of any element is set*/
static inline bool
vector8_is_highbit_set(const Vector8 v)
{
#ifdef USE_SSE2return _mm_movemask_epi8(v) != 0;
#elif defined(USE_NEON)return vmaxvq_u8(v) > 0x7F;
#elsereturn v & vector8_broadcast(0x80);
#endif
}/** Exactly like vector8_is_highbit_set except for the input type, so it* looks at each byte separately.** XXX x86 uses the same underlying type for 8-bit, 16-bit, and 32-bit* integer elements, but Arm does not, hence the need for a separate* function. We could instead adopt the behavior of Arm's vmaxvq_u32(), i.e.* check each 32-bit element, but that would require an additional mask* operation on x86.*/
#ifndef USE_NO_SIMD
static inline bool
vector32_is_highbit_set(const Vector32 v)
{
#if defined(USE_NEON)return vector8_is_highbit_set((Vector8) v);
#elsereturn vector8_is_highbit_set(v);
#endif
}
#endif /* ! USE_NO_SIMD *//** Return the bitwise OR of the inputs*/
static inline Vector8
vector8_or(const Vector8 v1, const Vector8 v2)
{
#ifdef USE_SSE2return _mm_or_si128(v1, v2);
#elif defined(USE_NEON)return vorrq_u8(v1, v2);
#elsereturn v1 | v2;
#endif
}#ifndef USE_NO_SIMD
static inline Vector32
vector32_or(const Vector32 v1, const Vector32 v2)
{
#ifdef USE_SSE2return _mm_or_si128(v1, v2);
#elif defined(USE_NEON)return vorrq_u32(v1, v2);
#endif
}
#endif /* ! USE_NO_SIMD *//** Return the result of subtracting the respective elements of the input* vectors using saturation (i.e., if the operation would yield a value less* than zero, zero is returned instead). For more information on saturation* arithmetic, see https://en.wikipedia.org/wiki/Saturation_arithmetic*/
#ifndef USE_NO_SIMD
static inline Vector8
vector8_ssub(const Vector8 v1, const Vector8 v2)
{
#ifdef USE_SSE2return _mm_subs_epu8(v1, v2);
#elif defined(USE_NEON)return vqsubq_u8(v1, v2);
#endif
}
#endif /* ! USE_NO_SIMD *//** Return a vector with all bits set in each lane where the the corresponding* lanes in the inputs are equal.*/
#ifndef USE_NO_SIMD
static inline Vector8
vector8_eq(const Vector8 v1, const Vector8 v2)
{
#ifdef USE_SSE2return _mm_cmpeq_epi8(v1, v2);
#elif defined(USE_NEON)return vceqq_u8(v1, v2);
#endif
}
#endif /* ! USE_NO_SIMD */#ifndef USE_NO_SIMD
static inline Vector32
vector32_eq(const Vector32 v1, const Vector32 v2)
{
#ifdef USE_SSE2return _mm_cmpeq_epi32(v1, v2);
#elif defined(USE_NEON)return vceqq_u32(v1, v2);
#endif
}
#endif /* ! USE_NO_SIMD */#endif /* SIMD_H */