代码随想录
这道题目有几个难点:
用unordered_map
来记录映射关系,其含义是unordered_map<出发地,map<目的地,航班次数>>
。
回答上面的问题:
unordered_map<出发地,map<目的地,航班次数>>
,来遍历每个出发地对应的多个目的地。bool backtracking(int ticketNum,vector& result);
if(1 + ticketNum == result.size())return true;
for (pair& target : targets[result[result.size() - 1]]) {if (target.second > 0 ) { // 记录到达机场是否飞过了result.push_back(target.first);target.second--;if (backtracking(ticketNum, result)) return true;result.pop_back();target.second++;}
}
完整的代码实现如下:
class Solution {
private:
// unordered_map<出发机场, map<到达机场, 航班次数>> targets
unordered_map> targets;
bool backtracking(int ticketNum, vector& result) {if (result.size() == ticketNum + 1) {return true;}for (pair& target : targets[result[result.size() - 1]]) {if (target.second > 0 ) { // 记录到达机场是否飞过了result.push_back(target.first);target.second--;if (backtracking(ticketNum, result)) return true;result.pop_back();target.second++;}}return false;
}
public:vector findItinerary(vector>& tickets) {targets.clear();vector result;for (const vector& vec : tickets) {targets[vec[0]][vec[1]]++; // 记录映射关系}result.push_back("JFK"); // 起始机场backtracking(tickets.size(), result);return result;}
};
以3*3为例,搜索过程如下:
void backtracking(int n, int row, vector& chessboard);
if (row == n) {result.push_back(chessboard);return;
}
for (int col = 0; col < n; col++) {if (isValid(row, col, chessboard, n)) { // 验证合法就可以放chessboard[row][col] = 'Q'; // 放置皇后backtracking(n, row + 1, chessboard);chessboard[row][col] = '.'; // 回溯,撤销皇后}
}
其中的isValid()函数是判断当前位置的合法性。
完整的代码实现如下:
class Solution {
private:
vector> result;
// n 为输入的棋盘大小
// row 是当前递归到棋盘的第几行了
void backtracking(int n, int row, vector& chessboard) {if (row == n) {result.push_back(chessboard);return;}for (int col = 0; col < n; col++) {if (isValid(row, col, chessboard, n)) { // 验证合法就可以放chessboard[row][col] = 'Q'; // 放置皇后backtracking(n, row + 1, chessboard);chessboard[row][col] = '.'; // 回溯,撤销皇后}}
}
bool isValid(int row, int col, vector& chessboard, int n) {// 检查列for (int i = 0; i < row; i++) { // 这是一个剪枝if (chessboard[i][col] == 'Q') {return false;}}// 检查 45度角是否有皇后for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {if (chessboard[i][j] == 'Q') {return false;}}// 检查 135度角是否有皇后for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {if (chessboard[i][j] == 'Q') {return false;}}return true;
}
public:vector> solveNQueens(int n) {result.clear();std::vector chessboard(n, std::string(n, '.'));backtracking(n, 0, chessboard);return result;}
};
bool backtracking(vector>& board);
bool backtracking(vector>& board) {for (int i = 0; i < board.size(); i++) { // 遍历行for (int j = 0; j < board[0].size(); j++) { // 遍历列if (board[i][j] != '.') continue;for (char k = '1'; k <= '9'; k++) { // (i, j) 这个位置放k是否合适if (isValid(i, j, k, board)) {board[i][j] = k; // 放置kif (backtracking(board)) return true; // 如果找到合适一组立刻返回board[i][j] = '.'; // 回溯,撤销k}}return false; // 9个数都试完了,都不行,那么就返回false}}return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
}
其中的isValid()函数用来判断当前数据分布是否满足条件。
完整的代码实现如下:
class Solution {
private:
bool backtracking(vector>& board) {for (int i = 0; i < board.size(); i++) { // 遍历行for (int j = 0; j < board[0].size(); j++) { // 遍历列if (board[i][j] == '.') {for (char k = '1'; k <= '9'; k++) { // (i, j) 这个位置放k是否合适if (isValid(i, j, k, board)) {board[i][j] = k; // 放置kif (backtracking(board)) return true; // 如果找到合适一组立刻返回board[i][j] = '.'; // 回溯,撤销k}}return false; // 9个数都试完了,都不行,那么就返回false } }}return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
}
bool isValid(int row, int col, char val, vector>& board) {for (int i = 0; i < 9; i++) { // 判断行里是否重复if (board[row][i] == val) {return false;}}for (int j = 0; j < 9; j++) { // 判断列里是否重复if (board[j][col] == val) {return false;}}int startRow = (row / 3) * 3;int startCol = (col / 3) * 3;for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复for (int j = startCol; j < startCol + 3; j++) {if (board[i][j] == val ) {return false;}}}return true;
}
public:void solveSudoku(vector>& board) {backtracking(board);}
};
回溯是递归的副产品,只要有递归就会有回溯,所以回溯法也经常和二叉树遍历,深度优先搜索混在一起,因为这两种方式都是用了递归。
回溯法就是暴力搜索,并不是什么高效的算法,最多再剪枝一下。
回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。
在回溯中,都会用for循环来横向遍历,递归来纵向遍历,也就是说用递归来控制for循环的次数。
在回溯中会进行剪枝,剪枝通常是根据已经知道的条件缩小for循环的遍历范围。在for循环上做剪枝操作是回溯法剪枝的常见套路!
回溯算法能解决如下问题:
上一篇:鸡兔同笼问题公式(鸡兔同笼问题的算法) 鸡兔同笼问题公式 鸡兔同笼问题公式及应用题
下一篇:【问题】Nginx部署vue项目进行跳转二级路由报404无法找到目标页面问题和Nginx部署vue项目访问不了接口